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Spin block persistence at finite temperature
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Abstract. We explore a new definition of the persistence exponent, measuring the probability
that a spin never flips after a quench of an Ising-like model at a temperatdaré & 7., while

the usual definition only makes sensefat 0. This probability is now defined for spin blocks,
and a general scaling for it, involving time and block linear size is introduced and illustrated by
extensive simulations.

Recently there has been significant progress in the study of coarsening systems [1]. Our
understanding of phase-ordering phenomena is now structured by simple ideas such as
dynamic scaling and universality. For instance, it is well established that nonconserved
order-parameter dynamics are characterized by a single length Isgale- /2, and that

a nontrivial exponent appears in the scaling of the order-parameter correlation function,
(p(x, oz, 1)) ~ [L(t)/L({)]", for ¢’ > t. However, advances in this field have been to

a large extent boosted by progress in numerical simulations of lattice systems such as the
Ising model, while few analytical results are known except in one dimension. Therefore
surprises are still to be expected as one probes more and more complicated correlations.

Such a surprise came out recently as much interest was devoted to the study of the so-
calledpersistencerobability [2—4]. Consider the following simple question: In a simulation
of the Glauber dynamics of the Ising model at zero temperature, what is the fraction of
spins p(¢) which have never flipped since the initial time? It turns out thatxhibits a
nontrivial algebraic decay(t) ~ t~?. A quantity such ag(¢) involves the whole history
of the system and is not easy to study analytically. Deratlal [5] showed analytically
thato = g in one dimension, but in higher dimensiorts,could only be determined by
numerical simulations [2, 3] or approximate methods [6—8]. More generally, the probability
that a stochastic physical quantity has never changed sign since the origin of its evolution
arises naturally in the context of nonequilibrium systems. Even for simple scalar diffusion
with zero mean random initial conditions, a nontrivial algebraic decay is found [7, 8].

For ferromagnetic systems, until very recently, persistence had only been defined and
studied at zero temperature for a single spin (local order parameter) [2, 3, 5, 6, 8] or at
T. for the total magnetization (global order parameter), where it yields a new independent
critical exponent [9]. ForIT > 0, p(t) decays exponentially due to thermal fluctuations,
and theT = 0 definition does not look very promising. However, there are good reasons
to be interested in a definition at fite temperature0 < T < T.. First, numerics,
renormalization group arguments or lariyeealculations [1] assess that finite (noncritical)
temperature correlations have the same scaling as zero-temperature correlations, with the
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samei. Thus, it is natural to expect the same kind of universality to hold for the persistence
exponent, and it is worthwhile checking this point. In addition, some discrepancies were
found between the value f for discrete (Ising) and continuoug¥) models [6]. These
discrepancies were attributed to anisotropy effects in lattice systems at zero temperature,
which should be lowered at finit&. Thirdly, certain important models such as the Ising
model with conserved Kawasaki dynamics do not coarsen at zero temperature, due to finite-
energy barriers, and must be simulated'at- 0. However, the corresponding continuous
model (modelB) exhibits coarsening at zero temperature, and thus one needs a rule to
extrapolate information from finite-temperature simulations using Kawasaki dynamics.

In a very recent paper, Derrida [10] proposed studying persistence at finite temperature
for nonconserved Ising and Potts models by comparing two systanasd B, evolving
with the same thermal noisitom two different initial conditions: completely random for
A, and all spins equal te-1 for B (fundamental state). The idea is th&texperiences
flips solely due to thermal fluctuations in an ordered system. Thus a flip is only recorded
when a spin at the same site in both samples does not flip simultaneoushanal B. In
two dimensions Derrida found that the corresponding persistence probahititydecays
algebraically with an exponent close to the valu® @t 7 = 0. More extensive simulations
performed by Stauffer [11] also suggest a temperature-independent exponent efjiral to
two dimensions, but significantly different in three and four dimensions. The value found
in three dimensions for > 0 is in good agreement with an approximate continuous
theory atT = 0 [6] (see conclusion). Derrida’s method is ingenious and straightforwardly
implemented, but it cannot be used to study conserved dynamics, as systeould not
evolve with Kawasaki dynamics, and it is not easy to generalize to a continuous field.

In this letter, we propose a very natural method to study persistence at finite temperature,
namely ‘block scaling’, which can be directly performed on a single sample. The idea
stems froma la Kadanoff renormalization group ideas. At finite temperature, we consider
the persistence of coarse-grained spin variables obtained by integrating the order parameter
(spin) on blocks. When the sizeof the blocks is increased, the effective temperature
flows to zero, which establishes a connection with the zero-temperature dynamics. It is
clear that this definition also applies to continuous models. We shall restrict ourselves to
nonconserved ferromagnetic models (modglwith L(¢) /¢, but the same method can
be used to study conserved models.

Before considering finite temperature, it is instructive to see how block scaling works
at T = 0, for which two persistence exponents can be defirteéor a single spin (local
order parameter), ang) corresponding to the probabilitys(¢) that the total magnetization
(global order parameter) has never changed sign [9, 12]. Majuat@f9] have shown the
exact resulty = ;1‘ for the Ising model in one dimension. Cornell and Sire [12] performed
direct numerical simulations gfy(¢) in two dimensions, by recording the time when the
global magnetization first changes sign7at= 0. This requires a very large number of
runs, which drastically limits the sample size.{ox ~ 128). In addition, finite-size scaling
is not very conclusive, leading to a large uncertainty on the valug ef 0.06 ~ 0.11.

We now show that block scaling leads to a much easier determinationaif7” = 0,
before moving to finitel'. Let us consider blocks of sizeand the probabilityp; () that
the total magnetization of a block has never changed sign sirc@ (we will use blocks
with an odd numbet? of spins). For large time, wheh(z) > [, blocks behave as single
spins andp;(¢t) ~ c;t~?, ¢; being an increasing function &f since obviously at large time
pr(t) > pi(t) if I > 1. At early times, whenL(z) < [, the system effectively sees infinite
blocks, andp;(¢) o t—%, wheref, is the persistence exponent of ttital magnetizatiorat
T = 0. Moreover, in the initial configuration, the larger the blocks the smaller the relative
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Figure 2. Similar scaling as in figure 1, for a
one-dimensional spin chain (200000 spins, 10
samples), with block sizé = 1, 21,41, 61,91
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10 e insert). / = 1 is omitted in the scaling, and
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fluctuations of the magnetization around zero, therefaré) < p;(¢), for I’ > [. The
cross over between the two regimes should occurat/?. These remarks lead us to the
following large! scaling,

pi(@) ~ 17 f(t/1?) 1)

where f(x) o x~% whenx — 0 and f(x) ~ x~® whenx — oo. For finiter, p;(r) must
tend to a finite value fof — oo, equal to the probability that the global magnetization
never changed sign. This requires= 265. Hence, computing,(z) for several values of
makes it possible to determirig by adjusting its value to obtain the best data collapse.

To check this scaling, we simulated tiie= 0 Glauber dynamics for the Ising model in
d = 2 on a 2008 lattice with blocks of linear size 1, 5, 9, 15, 19, 25, and 31. 20 samples
were averaged to obtain the final data presented in figure 1. We find excellent scaling, with
6o = 0.09. Similar results were obtained in one dimension, confirming the scaling relation
of equation (1) and the theoretical valdg = 211 (figure 2). Therefore, block scaling is a
very convenient and reliable method to determfipe

Now let us move to a finite temperature<07T < T, (not too close tdl;, a case studied
in a forthcoming paper [13]). The difficulty in defining a persistence exponent comes from
the fact that a spin may flip due to thermal fluctuations, leading to an exponential decay
p(t) ~ exp(—t/t). Indeed, atT = 0, a spin only flips when it is crossed by an interface
between a positive and negative domain, whereas at finite temperature, the dominating
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process at late time, when the domains are large, is the flip of a spin within a domain due
to thermal fluctuations. Therefore, at low temperature, it is natural from classical kinetics
intuition to expect an Arrhenius law ~ exp(—AE/T), where A€ is the energy barrier to

flip a spin (or a block) within an ordered domain. As— 0, r diverges andp crosses

over to a power law.

It is instructive to justify the Arrhenius law from a random process viewpoint. Let us
consider a block of linear sizk and spin block variableg,. When L(¢) is large enough,
the system can be considered locally at equilibrium inside a domain, and, since there are
no long-range correlations, the relative fluctuatiorppohas the scaling\g,/(¢;) o< /T /1.

Thus p;(¢) is essentially the probability that a stationary random procégs with zero
mean and mean square fluctuatiot?) = 7/1¢ crosses a barrier of amplitude of order 1.

If X(¢) is Gaussian and Markovian, it is the solution of a simple Langevin equation, with
a Gaussian white noisg(r) with (n(H)n(t)) = 2T/148(t —¢'). Then it is immediately seen
that in exponential time = €, p;(u) is the survival probability of a simple one-dimensional
random walker with diffusion coefficient72/1¢, starting fromx = 0 with a moving
absorbing wall ak (1) o« ./u. When the amplitude of the fluctuation vanishes, i.e. for small
T or largel, this survival probability can be evaluated by using the unperturbed solution of
the diffusion equation [14]. At large, p;(x) decays with a power law; (1) o« «~# and

B o< /19/T exp(—Cl1¢/T), whereC is a constant. Thus, we recover the heuristic Arrhenius
law with © oc 1/8.

The actual stochastic proceggt) is certainly non-Markovian. However, farmuch
bigger than the equilibrium correlation length, it is nearly Gaussian. Moreover, its correlator
C(t) = {¢;(t)e;(0)) can be bounded by two Markovian exponential correlators (because
there is no long-range correlation in time at equilibrium), and thus the Arrhenius law still
holds with proper constants inserted (although the power law in the prefactor may be
modified) [15]. The important point is that the effective temperature entering the Arrhenius
law of the spin blocks is cut by a factéf and thatr diverges very quickly wher is
increased, leading to a fast cross over tothe 0 behaviour. For « t, p;(¢) is expected
to behave in the same way as for = 0. Finally, at finite temperature (not too close
to T., in the vicinity of which a different scaling arises [13]), we expect a scaling of the
form p;(t) ~ 172 £ (¢/1%) exp[~t/z (I, T)], involving two cross over times clearly visible
in figure 3, which shows the result of two-dimensional simulations perform&d-at?7, /3
on a 1008 lattice, with/ = 1,3,5,7,9,11, 13. The exponential decay is clearly visible
for I = 1 and/ = 3. However, for larger blocks; is bigger than the simulation time, and
pi(t) has theT = 0 behaviour, with a power law decay with exponénfully compatible
with the T = 0 value ¢ = 0.22), for¢ > 2, and a power law decay with exponefat for
t < I2, just as expected. Figure 4 shows the scaling With= 0.09 (for/ = 7,9, 11, 13,
and a slightly smallef” = 7,./2 to eliminate the effect of the exponential cut-off).

Thus, block scaling leads to a clear definitiongoht finite temperature as the exponent
of the algebraic decay of the scaling functigiix). We find that in two dimensions, the
exponent®) andfy do not depend ol and are equal to thelf = 0 value, in agreement
with the results obtained with Derrida’s definition. It is also very satisfactory to observe
that both scaling functions of figures 1 and 4 are identical up to a multiplying factor, in a
very similar way as what is known for the equal-time two-point spin correlation function
[1]. It would be worthwhile to use the present method to studydisate Potts model,
as Derrida’s data foy = 7 suggested a temperature dependencg [df0]. On the basis
of the present work, we would expegtto be independent of', but this point has to be
confirmed.

We conclude with a look at the puzzling three-dimensional case. Using the present
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block method, we find an exponeét.o consistent with the valuér.o = 0.26 obtained

by Stauffer [11] using Derrida’s definition, but different from tfie= 0 value6;_o = 0.17

[3, 6]. In fact, it is well known (although a precise explanation is still lacking) [16, 6],
that the domain length scale() does not grow asY? in three dimensions, but a§°3,
presumably due to lattice effects. If we now express our general scaling as a function of the
more intrinsicL(z) instead of time itself, we find that faf = 0 andT > 0 (in the latter

case forl? « t <« (I, T)), both persistence probabilities decay;as) ~ L(t)~?, with the
samef ~ 8:—%,; ~ %%,)6 ~ 0.52, in good agreement with the theoretical prediction of [6].

We are very grateful to B Derrida, S Cornell, and D Stauffer for helpful discussions.
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