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Abstract. We explore a new definition of the persistence exponent, measuring the probability
that a spin never flips after a quench of an Ising-like model at a temperature 0< T < Tc, while
the usual definition only makes sense atT = 0. This probability is now defined for spin blocks,
and a general scaling for it, involving time and block linear size is introduced and illustrated by
extensive simulations.

Recently there has been significant progress in the study of coarsening systems [1]. Our
understanding of phase-ordering phenomena is now structured by simple ideas such as
dynamic scaling and universality. For instance, it is well established that nonconserved
order-parameter dynamics are characterized by a single length scaleL(t) ∼ t1/z, and that
a nontrivial exponentλ appears in the scaling of the order-parameter correlation function,
〈ϕ(x, t ′)ϕ(x, t)〉 ∼ [L(t)/L(t ′)]λ, for t ′ � t . However, advances in this field have been to
a large extent boosted by progress in numerical simulations of lattice systems such as the
Ising model, while few analytical results are known except in one dimension. Therefore
surprises are still to be expected as one probes more and more complicated correlations.

Such a surprise came out recently as much interest was devoted to the study of the so-
calledpersistenceprobability [2–4]. Consider the following simple question: In a simulation
of the Glauber dynamics of the Ising model at zero temperature, what is the fraction of
spinsp(t) which have never flipped since the initial time? It turns out thatp exhibits a
nontrivial algebraic decayp(t) ∼ t−θ . A quantity such asp(t) involves the whole history
of the system and is not easy to study analytically. Derridaet al [5] showed analytically
that θ = 3

8 in one dimension, but in higher dimensions,θ could only be determined by
numerical simulations [2, 3] or approximate methods [6–8]. More generally, the probability
that a stochastic physical quantity has never changed sign since the origin of its evolution
arises naturally in the context of nonequilibrium systems. Even for simple scalar diffusion
with zero mean random initial conditions, a nontrivial algebraic decay is found [7, 8].

For ferromagnetic systems, until very recently, persistence had only been defined and
studied at zero temperature for a single spin (local order parameter) [2, 3, 5, 6, 8] or at
Tc for the total magnetization (global order parameter), where it yields a new independent
critical exponent [9]. ForT > 0, p(t) decays exponentially due to thermal fluctuations,
and theT = 0 definition does not look very promising. However, there are good reasons
to be interested in a definition at afinite temperature0 < T < Tc. First, numerics,
renormalization group arguments or large-N calculations [1] assess that finite (noncritical)
temperature correlations have the same scaling as zero-temperature correlations, with the
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sameλ. Thus, it is natural to expect the same kind of universality to hold for the persistence
exponent, and it is worthwhile checking this point. In addition, some discrepancies were
found between the value ofθ for discrete (Ising) and continuous (ϕ4) models [6]. These
discrepancies were attributed to anisotropy effects in lattice systems at zero temperature,
which should be lowered at finiteT . Thirdly, certain important models such as the Ising
model with conserved Kawasaki dynamics do not coarsen at zero temperature, due to finite-
energy barriers, and must be simulated atT > 0. However, the corresponding continuous
model (modelB) exhibits coarsening at zero temperature, and thus one needs a rule to
extrapolate information from finite-temperature simulations using Kawasaki dynamics.

In a very recent paper, Derrida [10] proposed studying persistence at finite temperature
for nonconserved Ising and Potts models by comparing two systems,A andB, evolving
with the same thermal noisefrom two different initial conditions: completely random for
A, and all spins equal to+1 for B (fundamental state). The idea is thatB experiences
flips solely due to thermal fluctuations in an ordered system. Thus a flip is only recorded
when a spin at the same site in both samples does not flip simultaneously inA andB. In
two dimensions Derrida found that the corresponding persistence probabilityp(t) decays
algebraically with an exponent close to the value ofθ atT = 0. More extensive simulations
performed by Stauffer [11] also suggest a temperature-independent exponent equal toθ in
two dimensions, but significantly different in three and four dimensions. The value found
in three dimensions forT > 0 is in good agreement with an approximate continuous
theory atT = 0 [6] (see conclusion). Derrida’s method is ingenious and straightforwardly
implemented, but it cannot be used to study conserved dynamics, as systemB would not
evolve with Kawasaki dynamics, and it is not easy to generalize to a continuous field.

In this letter, we propose a very natural method to study persistence at finite temperature,
namely ‘block scaling’, which can be directly performed on a single sample. The idea
stems fromà la Kadanoff renormalization group ideas. At finite temperature, we consider
the persistence of coarse-grained spin variables obtained by integrating the order parameter
(spin) on blocks. When the size l of the blocks is increased, the effective temperature
flows to zero, which establishes a connection with the zero-temperature dynamics. It is
clear that this definition also applies to continuous models. We shall restrict ourselves to
nonconserved ferromagnetic models (modelA) with L(t) ∝ √t , but the same method can
be used to study conserved models.

Before considering finite temperature, it is instructive to see how block scaling works
at T = 0, for which two persistence exponents can be defined:θ for a single spin (local
order parameter), andθ0 corresponding to the probabilityp0(t) that the total magnetization
(global order parameter) has never changed sign [9, 12]. Majumdaret al [9] have shown the
exact resultθ0 = 1

4 for the Ising model in one dimension. Cornell and Sire [12] performed
direct numerical simulations ofp0(t) in two dimensions, by recording the time when the
global magnetization first changes sign atT = 0. This requires a very large number of
runs, which drastically limits the sample size (Lmax∼ 128). In addition, finite-size scaling
is not very conclusive, leading to a large uncertainty on the value ofθ0 ≈ 0.06∼ 0.11.

We now show that block scaling leads to a much easier determination ofθ0 at T = 0,
before moving to finiteT . Let us consider blocks of sizel and the probabilitypl(t) that
the total magnetization of a block has never changed sign sincet = 0 (we will use blocks
with an odd numberld of spins). For large time, whenL(t) � l, blocks behave as single
spins andpl(t) ∼ clt−θ , cl being an increasing function ofl, since obviously at large time
pl′(t) > pl(t) if l′ > l. At early times, whenL(t) 6 l, the system effectively sees infinite
blocks, andpl(t) ∝ t−θ0, whereθ0 is the persistence exponent of thetotal magnetizationat
T = 0. Moreover, in the initial configuration, the larger the blocks the smaller the relative
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Figure 1. Block persistence atT = 0
obtained from simulation of the nonconserved
Ising model on a 20002 lattice, for l =
1, 5, 9, 15, 19, 25, and 31 (from bottom to top
in the insert).pl(t) decays ast−θ0 at early time
and ast−θ at large time. Excellent scaling is
then obtained takingθ0 = 0.09.
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Figure 2. Similar scaling as in figure 1, for a
one-dimensional spin chain (200 000 spins, 10
samples), with block sizel = 1, 21, 41, 61, 91
(from bottom to top in the right part of the
insert). l = 1 is omitted in the scaling, and
the data collapse improves as the block size
increases.

fluctuations of the magnetization around zero, thereforepl′(t) < pl(t), for l′ > l. The
cross over between the two regimes should occur att ∝ l2. These remarks lead us to the
following large l scaling,

pl(t) ∼ l−αf (t/ l2) (1)

wheref (x) ∝ x−θ0 whenx → 0 andf (x) ∼ x−θ whenx → ∞. For finite t , pl(t) must
tend to a finite value forl → ∞, equal to the probability that the global magnetization
never changed sign. This requiresα = 2θ0. Hence, computingpl(t) for several values ofl
makes it possible to determineθ0 by adjusting its value to obtain the best data collapse.

To check this scaling, we simulated theT = 0 Glauber dynamics for the Ising model in
d = 2 on a 20002 lattice with blocks of linear size 1, 5, 9, 15, 19, 25, and 31. 20 samples
were averaged to obtain the final data presented in figure 1. We find excellent scaling, with
θ0 = 0.09. Similar results were obtained in one dimension, confirming the scaling relation
of equation (1) and the theoretical valueθ0 = 1

4 (figure 2). Therefore, block scaling is a
very convenient and reliable method to determineθ0.

Now let us move to a finite temperature 0< T < Tc (not too close toTc, a case studied
in a forthcoming paper [13]). The difficulty in defining a persistence exponent comes from
the fact that a spin may flip due to thermal fluctuations, leading to an exponential decay
p(t) ∼ exp(−t/τ ). Indeed, atT = 0, a spin only flips when it is crossed by an interface
between a positive and negative domain, whereas at finite temperature, the dominating



L794 Letter to the Editor

process at late time, when the domains are large, is the flip of a spin within a domain due
to thermal fluctuations. Therefore, at low temperature, it is natural from classical kinetics
intuition to expect an Arrhenius lawτ ∼ exp(−1E/T ), where1E is the energy barrier to
flip a spin (or a block) within an ordered domain. AsT → 0, τ diverges andp crosses
over to a power law.

It is instructive to justify the Arrhenius law from a random process viewpoint. Let us
consider a block of linear sizel, and spin block variablesϕl . WhenL(t) is large enough,
the system can be considered locally at equilibrium inside a domain, and, since there are
no long-range correlations, the relative fluctuation ofϕl has the scaling1ϕl/〈ϕl〉 ∝

√
T/ld .

Thus pl(t) is essentially the probability that a stationary random processX(t) with zero
mean and mean square fluctuation〈X2〉 = T/ld crosses a barrier of amplitude of order 1.
If X(t) is Gaussian and Markovian, it is the solution of a simple Langevin equation, with
a Gaussian white noiseη(t) with 〈η(t)η(t ′)〉 = 2T/ldδ(t − t ′). Then it is immediately seen
that in exponential timeu = et , pl(u) is the survival probability of a simple one-dimensional
random walker with diffusion coefficient 2T/ld , starting from x = 0 with a moving
absorbing wall atx(u) ∝ √u. When the amplitude of the fluctuation vanishes, i.e. for small
T or largel, this survival probability can be evaluated by using the unperturbed solution of
the diffusion equation [14]. At largeu, pl(u) decays with a power lawpl(u) ∝ u−β and
β ∝

√
ld/T exp(−Cld/T ), whereC is a constant. Thus, we recover the heuristic Arrhenius

law with τ ∝ 1/β.
The actual stochastic processϕl(t) is certainly non-Markovian. However, forl much

bigger than the equilibrium correlation length, it is nearly Gaussian. Moreover, its correlator
C(t) = 〈ϕl(t)ϕl(0)〉 can be bounded by two Markovian exponential correlators (because
there is no long-range correlation in time at equilibrium), and thus the Arrhenius law still
holds with proper constants inserted (although the power law in the prefactor may be
modified) [15]. The important point is that the effective temperature entering the Arrhenius
law of the spin blocks is cut by a factorld and thatτ diverges very quickly whenl is
increased, leading to a fast cross over to theT = 0 behaviour. Fort � τ , pl(t) is expected
to behave in the same way as forT = 0. Finally, at finite temperature (not too close
to Tc, in the vicinity of which a different scaling arises [13]), we expect a scaling of the
form pl(t) ∼ l−2θ0f (t/ l2) exp[−t/τ (l, T )], involving two cross over times clearly visible
in figure 3, which shows the result of two-dimensional simulations performed atT = 2Tc/3
on a 10002 lattice, with l = 1, 3, 5, 7, 9, 11, 13. The exponential decay is clearly visible
for l = 1 andl = 3. However, for larger blocks,τ is bigger than the simulation time, and
pl(t) has theT = 0 behaviour, with a power law decay with exponentθ fully compatible
with the T = 0 value (θ = 0.22), for t � l2, and a power law decay with exponentθ0, for
t < l2, just as expected. Figure 4 shows the scaling withθ0 = 0.09 (for l = 7, 9, 11, 13,
and a slightly smallerT = Tc/2 to eliminate the effect of the exponential cut-off).

Thus, block scaling leads to a clear definition ofθ at finite temperature as the exponent
of the algebraic decay of the scaling functionf (x). We find that in two dimensions, the
exponentsθ andθ0 do not depend onT and are equal to theirT = 0 value, in agreement
with the results obtained with Derrida’s definition. It is also very satisfactory to observe
that both scaling functions of figures 1 and 4 are identical up to a multiplying factor, in a
very similar way as what is known for the equal-time two-point spin correlation function
[1]. It would be worthwhile to use the present method to study theq-state Potts model,
as Derrida’s data forq = 7 suggested a temperature dependence ofθ [10]. On the basis
of the present work, we would expectθ to be independent ofT , but this point has to be
confirmed.

We conclude with a look at the puzzling three-dimensional case. Using the present
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Figure 3. pl(t) for T = 2Tc/3, and block sizes
l = 1, 3, 5, 7, 9, 11, 13.
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Figure 4. pl(t) expressed in scaling form for
T = Tc/2, and block sizesl = 7, 9, 11, 13,
using the same value for 2θ0 = 0.18 as in the
T = 0 case. Note the similarity with theT = 0
scaling function of figure 1.

block method, we find an exponentθT>0 consistent with the valueθT>0 = 0.26 obtained
by Stauffer [11] using Derrida’s definition, but different from theT = 0 valueθT=0 = 0.17
[3, 6]. In fact, it is well known (although a precise explanation is still lacking) [16, 6],
that the domain length scaleL(t) does not grow ast1/2 in three dimensions, but ast0.33,
presumably due to lattice effects. If we now express our general scaling as a function of the
more intrinsicL(t) instead of time itself, we find that forT = 0 andT > 0 (in the latter
case forl2� t � τ(l, T )), both persistence probabilities decay asp(t) ∼ L(t)−θ , with the
sameθ ≈ 0.17

0.33 ≈ 0.26
0.5 ≈ 0.52, in good agreement with the theoretical prediction of [6].

We are very grateful to B Derrida, S Cornell, and D Stauffer for helpful discussions.
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